

N.I.	\sim 1	
Name:	Class:	
1 191110:	C1433.	*

Find lengths and measures of bisected line segments and angles

1.	After bisecting a line measuring 12 centimeters, Linda has two line segments. What is the measure of each new line segment?
	12cm
2.	An angle is bisected, forming two new angles. Each angle has a measure of 30°. What was the measure of the original angle?
3.	After bisecting a line measuring 80 centimeters, Louis has two line segments. What is the measure of each new line segment?
	80cm
4.	After bisecting a line measuring 160 centimeters, Josh has two line segments. What the measure of each new line segment?
	160cm
5.	After bisecting a line measuring 90 centimeters, Leo has two line segments. What is the measure of each new line segment?
	90cm

N I	\sim 1	
Name:	Class:	
1 1 0 1 1 1 0	~ 1033 .	

Find lengths and measures of bisected line segments and angles

1.				ectir sure									ters	i, Lir	nda	has t	:WO	line	e seg	gmei	nts.	Wha	at is
	D:	-						120	1			P	an s :			}		207 103 44					
•	The sm	e me	asur line	line s e of segr	the d	origi															W		
		So,	each	new	line s	segm	ent r	meas	ures	6cı	m.												
2.		S	o, the	origi	nal a	ngle	meas	surec	60	0.													
3		So,	each	new I	ine s	egme	ent n	neası	ures	400	cm.												
4	•	So, each new line segment measures 80cm.																					
5	•	So,	each	new I	ine so	egme	ent m	neası	ıres	45c	m.												