Name:
Class:

Arithmetic sequences with fractions

a. Find the next fraction in this sequence.

$$
\frac{1}{9}, \frac{3}{9}, \frac{5}{9}, \ldots
$$

b. Find the next fraction in this sequence.

$$
\frac{7}{8}, \frac{6}{8}, \frac{5}{8}, \frac{4}{8}, \frac{3}{8}, \ldots
$$

c. Find the next fraction in this sequence.

$$
\frac{9}{10}, \frac{7}{10}, \frac{5}{10}, \frac{3}{10}, \ldots
$$

d. Find the next fraction in this sequence.

$$
\frac{1}{6}, \frac{3}{6}, \frac{5}{6}, \ldots
$$

e. Find the next fraction in this sequence.

$$
\frac{7}{7}, \frac{6}{7}, \frac{5}{7}, \frac{4}{7}, \frac{3}{7}, \cdots
$$

f. Find the next fraction in this sequence.

$$
\frac{8}{10}, \frac{6}{10}, \frac{4}{10}, \frac{2}{10}, \ldots
$$

Name:
Class:

Arithmetic sequences with fractions

a. Find the next fraction in this sequence.

$$
\frac{1}{9}, \frac{3}{9}, \frac{5}{9}, \ldots
$$

First of all, let's find the general trend in this sequence.
You see that the numerators of the fractions increase by 2 each time.
So, the general trend is add $\frac{2}{9}$
Now add $\frac{2}{9}$ to $\frac{5}{9}$ to get the next fraction.

$$
\frac{2}{9}+\frac{5}{9}=\frac{7}{9} \text { So, the next fraction is } \frac{7}{9}
$$

b. Find the next fraction in this sequence.

$$
\frac{7}{8} \cdot \frac{6}{8}, \frac{5}{8}, \frac{4}{8}, \frac{3}{8} \cdots
$$

First of all, let's find the general trend in this sequence.
You see that the numerators of the fractions decrease by 1 each time.
So, the general trend is subtract $\frac{1}{8}$
Subtract $\frac{1}{8}$ from $\frac{3}{8}$ to get the next fraction.

$$
\frac{3}{8}-\frac{1}{8}=\frac{2}{8} \text { So, the next fraction is } \frac{2}{8}
$$

c. Find the next fraction in this sequence.

$$
\frac{9}{10}, \frac{7}{10}, \frac{5}{10}, \frac{3}{10}, \ldots
$$

You see that the numerators of the fractions decrease by 2 each time.
So, the general trend is subtract $\frac{2}{10}$
Subtract $\frac{2}{10}$ from $\frac{3}{10}$ to get the next fraction.

$$
\frac{3}{10}-\frac{2}{10}=\frac{1}{10} \text { so, the next fraction is }
$$

\qquad

