

K I	\sim 1	
Name:	Class:	i

Complete addition and subtraction sentences with mixed numbers.

			Find the	value	of the	varia	bles in	each	expres	ssion.		
a.	t - 1 1 =	2										
b.	5 3/4 - V =	= 1 2										
c.	w - 3 - 1 3	= 5										
d.	2 <u>3</u> + u =	= 3 19 20										
е.	s - 3 <u>6</u> =	5 <u>6</u>										
f.	10 - 2 + t	= 12										
g.	$26\frac{3}{7} + s$	= 24										
h.	v - 5 8 10	7 6 8										

N/I	\sim 1	
Name:	Class:	in a constant of the constant of

Complete addition and subtraction sentences with mixed numbers.

Find the value of th	e variables in each expression.
1. $t - 1\frac{1}{2} = 2$ To solve for t, let's add $1\frac{1}{2}$	d. $2\frac{3}{4} + u = 3\frac{19}{20}$ To solve for u, let's subtract $2\frac{3}{4}$
to both sides of the expression.	from both sides of the expression.
$t = 2 + 1 \frac{1}{2}$	$u = 3\frac{19}{20} - 2\frac{3}{4}$
$t = (2 + 1)\frac{1}{2}$	$u = (3-2)\frac{19}{20} - \frac{3}{4}$
$t = 3\frac{1}{2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
So, $t = 3\frac{1}{2}$	So, $u = 1\frac{1}{5}$
$5\frac{3}{4} - V = \frac{1}{2}$	e. $s - 3\frac{6}{8} = 5\frac{6}{8}$
To solve for v, let's add v to	To solve for s, let's add $3\frac{6}{8}$
both sides of the expression.	to both sides of the expression.
$5\frac{3}{4} = \frac{1}{2} + V$	$s = 5 \frac{6}{8} + 3 \frac{6}{8}$
Now, let's subtract $\frac{1}{2}$ from both sides $5\frac{3}{4} - \frac{1}{2} = v$	$s = (5+3) \frac{6}{8} + \frac{6}{8}$
$V = (5) \frac{3}{4} - \frac{1}{2}$ $\frac{3}{3} - \frac{1}{2} = 5 \frac{1}{4}$	$= 8\frac{12}{8} \longrightarrow (8+1)\frac{1}{2}$
So, $v = 5\frac{1}{4}$	$So, s = 9\frac{1}{2}$
$w - 3 - \frac{1}{3} = 5$	f. 10 ½ + t = 12
To solve for w, let's add $3\frac{1}{3}$	To solve for t, let's subtract $10^{-\frac{2}{5}}$
to both sides of the expression.	from both sides of the expression.
$W = 5 + 3\frac{1}{3}$	$t = 12 - 10 \frac{2}{5}$
$W = (5 + 3) \frac{1}{3}$	$t = (12-10) - \frac{2}{5}$
$W = 8 \frac{1}{3}$	= 2-2/5
So, $W = 8 \frac{1}{3}$	So, $t = 2\frac{2}{5}$