Name: Class:

Complete addition and subtraction sentences with mixed numbers.

Find the value of the variables in each expression.
a. $t-1 \frac{1}{2}=2$
b. $\quad 5 \frac{3}{4}-v=\frac{1}{2}$
c. $w-3 \frac{1}{3}=5$
d. $2 \frac{3}{4}+u=3 \frac{19}{20}$
e. $\quad 5-3 \frac{6}{8}=5 \frac{6}{8}$
f. $10 \frac{2}{5}+t=12$
g. $26 \frac{3}{7}+s=24$
h. $\quad v-5 \frac{8}{10}=7 \frac{6}{8}$

Name:

Class:

Complete addition and subtraction sentences with mixed numbers.

Find the value of the variables in each expression.
a. $t-1 \frac{1}{2}=2$

To solve for t, let's add $1 \frac{1}{2}$
to both sides of the expression.
$t=2+1 \frac{1}{2}$
$t=(2+1) \frac{1}{2}$
$t=3 \frac{1}{2}$
So, $t=3 \frac{1}{2}$
d. $2 \frac{3}{4}+u=3 \frac{19}{20}$

To solve for u, let's subtract $2 \frac{3}{4}$
from both sides of the expression.
$u=3 \frac{19}{20}-2 \frac{3}{4}$
$u=(3-2) \frac{19}{20}-\frac{3}{4}$
$\frac{19-15}{20}=1 \frac{4}{20} \longrightarrow 1 \frac{1}{5}$
So, $u=1 \frac{1}{5}$
b. $5 \frac{3}{4}-v=\frac{1}{2}$

To solve for v, let's add v to both sides of the expression
$5 \frac{3}{4}=\frac{1}{2}+v$
Now, let's subtract $\frac{1}{2}$ from both sides
$5 \frac{3}{4}-\frac{1}{2}=v$
$v=(5) \frac{3}{4}-\frac{1}{2}$

$$
\frac{{ }_{3}^{4} \cdot 2_{2}^{2}}{4}=5 \frac{1}{4}
$$

So, $v=5 \frac{1}{4}$
e. $s-3 \frac{6}{8}=5 \frac{6}{8}$

To solve for s, let's add $3 \frac{6}{8}$
to both sides of the expression.
$s=5 \frac{6}{8}+3 \frac{6}{8}$
$s=(5+3) \frac{6}{8}+\frac{6}{8}$
$=8 \frac{12}{8} \longrightarrow(8+1) \frac{1}{2}$
So, $s=9 \frac{1}{2}$
c. $w-3 \frac{1}{3}=5$

To solve for w, let's add $3 \frac{1}{3}$
to both sides of the expression.
$w=5+3 \frac{1}{3}$
$w=(5+3) \frac{1}{3}$
$w=8 \frac{1}{3}$
So, $w=8 \frac{1}{3}$
f. $10 \frac{2}{5}+t=12$

To solve for t, let's subtract $10 \frac{2}{5}$
from both sides of the expression.
$t=12-10 \frac{2}{5}$
$t=(12-10) \frac{2}{5}$

$$
=2 \frac{2}{5}
$$

